The English encyclopedia Allmultimedia.org will be launched in two phases.
The final launch of the Allmultimedia.org will take place on February 27, 2026
(shortly after the 2026 Winter Olympics).
The final launch of the Allmultimedia.org will take place on February 27, 2026
(shortly after the 2026 Winter Olympics).
Grupa jednotek
Z Multimediaexpo.cz
(Rozdíly mezi verzemi)
m (1 revizi) |
(+ Masivní vylepšení) |
||
| Řádka 1: | Řádka 1: | ||
| - | + | Pod pojmem '''grupa jednotek''' se v algebře obvykle rozumí [[množina]] všech [[invertibilní prvek|invertibilních prvků]] [[okruh (algebra)|okruhu]], který obsahuje prvek 1 ([[neutrální prvek]]). Invertibilní prvek okruhu je takový prvek ''a'', k němuž existuje prvek ''b'' tak, že ''ab''=1. | |
| + | Všechny invertibilní prvky okruhu tvoří multiplikativní grupu, neboť je mezi nimi neutrální prvek (1), asociativita operace násobení je zděděna po okruhu, existence inverzního prvku plyne z definice, a součin dvou invertibilních prvků je opět invertibilní. | ||
| + | |||
| + | == Externí odkazy == | ||
| + | |||
| + | {{Článek z Wikipedie}} | ||
[[Kategorie:Algebraické struktury]] | [[Kategorie:Algebraické struktury]] | ||
Aktuální verze z 16. 10. 2014, 07:35
Pod pojmem grupa jednotek se v algebře obvykle rozumí množina všech invertibilních prvků okruhu, který obsahuje prvek 1 (neutrální prvek). Invertibilní prvek okruhu je takový prvek a, k němuž existuje prvek b tak, že ab=1.
Všechny invertibilní prvky okruhu tvoří multiplikativní grupu, neboť je mezi nimi neutrální prvek (1), asociativita operace násobení je zděděna po okruhu, existence inverzního prvku plyne z definice, a součin dvou invertibilních prvků je opět invertibilní.
Externí odkazy
| Náklady na energie a provoz naší encyklopedie prudce vzrostly. Potřebujeme vaši podporu... Kolik ?? To je na Vás. Náš FIO účet — 2500575897 / 2010 |
|---|
| Informace o článku.
Článek je převzat z Wikipedie, otevřené encyklopedie, do které přispívají dobrovolníci z celého světa. |
