The English encyclopedia Allmultimedia.org will be launched in two phases.
The final launch of the Allmultimedia.org will take place on February 24, 2026
(shortly after the 2026 Winter Olympics).

Carmichaelova funkce

Z Multimediaexpo.cz

Carmichaelova funkce, pojmenovaná po Robertu Danielovi Carmichaelovi (1879–1967) , je funkce z oboru teorie čísel značená λ(n), která pro přirozené číslo n vrátí nejmenší m takové, že

\(a^m \equiv 1 \pmod{n}\)

pro všechna přirozená čísla a menší než n a nesoudělná s n. Tedy vrátí exponent multiplikativní grupy celých čísel modulo n.

Prvních 26 hodnoto této funkce pro n = 1, 2, 3 … je 1, 1, 2, 2, 4, 2, 6, 2, 6, 4, 10, 2, 12, 6, 4, 4, 16, 6, 18, 4, 6, 10, 22, 2, 20, 12, …[1]

Carmichaelova věta

Carmichaelova věta říká, že Carmichaelovu funkci lze definovat se stejným výsledkem také pomocí rekurze:

Pro prvočíslo p a kladné celé číslo k takové, že p≥3 nebo k≤2 definujeme

\(\lambda(p^k) = p^{k-1}(p-1).\,\),

co zároveň odpovídá hodnotě Eulerovy funkce.

Pro celá čísla k≥3 definujeme

\(\lambda(2^k) = 2^{k-2}\,\)

a pro různá prvočísla \(p_1,p_2,\ldots,p_t\) a kladná celá čísla \(k_1,k_2,\ldots,k_t\) definujeme

\(\lambda(p_1^{k_1} p_2^{k_2} \cdots p_t^{k_t}) = \mathrm{NSN}( \lambda(p_1^{k_1}), \lambda(p_2^{k_2}), \ldots, \lambda(p_t^{k_t}) )\)

kde \(\mathrm{NSN}\) značí nejmenší společný násobek.

Jak je vidět, Carmichaelova věta zobecňuje výsledky Malé Fermatovy věty a Eulerovy věty.

Reference

  1. tato posloupnost má v OEIS kód A002322