The English encyclopedia Allmultimedia.org will be launched in two phases.
The final launch of the Allmultimedia.org will take place on February 24, 2026
(shortly after the 2026 Winter Olympics).
The final launch of the Allmultimedia.org will take place on February 24, 2026
(shortly after the 2026 Winter Olympics).
Weierstrassova funkce
Z Multimediaexpo.cz
Weierstrassova funkce, pojmenovaná po německém matematikovi Karlu Weierstrassovi (1815–1897), je matematická funkce, která je ve všech bodech spojitá, ale v žádném bodě nemá derivaci.
Funkce se chová jako fraktál, neboť zvětšené části grafu a původní graf jsou podobné.[1]
Definice
Weierstrassova funkce bývá uváděna v různých tvarech s různými konstantami.
- Podle původní publikace (http://historical.library.cornell.edu/…) a http://planetmath.org/…:
- \(f(x) = \sum_{n=0}^\infty a^n\cos(b^n\pi x)\)
- kde \(0<a<1\), \(b\) je kladné liché číslo a konstanty splňují následující podmínku.
- \( ab > 1+\frac{3}{2} \pi\)
- Později bylo dokázáno, že poslední uvedenou podmínku lze nahradit podmínkou \(ab \ge 1\).
- \(f_a(x) = \sum_{k=1}^\infty \frac{ \sin(\pi k^a x) } {\pi k^a} \,\)
- přičemž údajně podle původní publikace \(a = 2\). Tato funkce má však v určitých izolovaných bodech konečné derivace. Podle jiných zdrojů[2] je tato funkce nazývána Riemannova, neboť podle Weierstrasse ji Bernhard Riemann uváděl na svých přednáškách okolo roku 1861.
Související články
Reference
- ↑ 1,0 1,1 Příklad Weierstrassovy funkce, ukázka soběpodobnosti: http://www.math.washington.edu/…
- ↑ http://epubl.ltu.se/1402-1617/2003/320/index-en.html
- ↑ http://pirate.shu.edu/~wachsmut/ira/cont/fp_weier.html
| Náklady na energie a provoz naší encyklopedie prudce vzrostly. Potřebujeme vaši podporu... Kolik ?? To je na Vás. Náš FIO účet — 2500575897 / 2010 |
|---|
| Informace o článku.
Článek je převzat z Wikipedie, otevřené encyklopedie, do které přispívají dobrovolníci z celého světa. |
